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An example from the field of rigid body dynamics, possessing a natural physical justification, is presented. The behaviour of the 
solutions of the equatious of motion in the real domain, whatever the initial data, is regular,, nevertheless, depending on the 
values of a certain control parameter, the solution of the system may branch in the complex time plane, and the system will have 
multi-valued first integrals. A denumerable sequence of single-valued polynomial integrals of arbitrarily high even degree is found 
(unlike Kovalevskaya's ease, in which the degree of the first integral of the Euler-Poisson equations is four). As an extension, a 
system from non-holonomic mechanics is considered. © 1997 Elsevier Science Ltd. All rights reserved. 

It is well known that the equations of motion in the classical problems of rigid body dynamics (the 
Euler-Poisson equations, Kirchhoff's equations, and the Poincar6-Lamb-Zhukovskii equations) [1, 2] 
may be expressed hi quasi-homogeneous form (in the senses of the definition in [3]). Since Kovalevskaya's 
time, to seek integrable cases of such systems a method has been used based on studying the branching 
of the general solution in the complex time plane. When the general solution was meromorphic, this 
was associated with the existence of an additional algebraic first integral and with the integrability of 
the system using theta-functions. Development of this idea led to Husson's method of proving that no 
additional algebraic integral exists and to the methods described in [4-6], in which obstacles to the 
existence of an additional first integral, single-valued in the complex plane, were found. These results 
convinced specialists in rigid body dynamics that the integrability of the equations of motion, and hence 
also their regular behaviour, were due to the existence of singie-valued integrals and their integrability 
in theta-functions. 

1. Q U A S I - H O M O G E N E O U S  SYSTEMS AND KOVALEVSKAYA INDICES 

We shall call a system of n differential equations 

Yc i = v i ( x  I . . . . .  x n ) ,  i =  1 . . . . .  n (1.1) 

quasi-homogeneous with quasi-homogeneity i n d i c e s g l , . . .  , g n  ~ Q i f  

i ( C~gl Xl ..... o~gn Xn ) "~ o~gi+lv i (X] ..... X n ) (1.2) 

for all values of x, and a > 0. For a quasi-homogeneous first integral ~ ( x l , . . . ,  xn) of system (1.1), it 
must be true that 

' t ,  ( a St x l . . . .  , ¢x S" x ,, ) = o~ '~ ' t ,  ( x t . . . . .  x ,, ) (1.3) 

where the number g ~ R is known as the quasi-homogeneity index. 
As an example, we can consider system (1.1) with homogeneous quadratic right-hand sides. In that 

case gl = g n  = 1. In rigid body dynamics, Kirchhoff's equations, describing the motion of a simply- 
connected rigid body in an unlimited volume of an irrational ideal incompressible fluid [12], can be 
reduced to this da,,~s of systems. The same is true of the Poincar6-Lam~Zhukovskii equations governing 
the motion about a fixed point of a rigid body having ellipsoid cavities filled with a homogeneous 
turbulent ideal fluid [2]. 

A modification of Kovalevskaya's method has been applied to quasi-homogeneous systems, and the 
so-called Kovalevskaya indices, characterizing the expansion of the general solution near a singular point 
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of a system of differential equations (if the general solution is meromorphic, these indices are integers), 
were associated with the degrees of quasi-homogeneity of the first integrals [3]. For further application, 
we will reformulate the results previously obtained in [3, 7] more rigorously. 

Equations (1.1) have a particular solution of the form 

X i = Cl t - g l  , . . . , X  n = Cn t - g n  , 

where the constant coefficients c/(complex in the general case) satisfy an algebraic system of equations 

U i (¢1  . . . . .  Cn ) = - - g i c i  ' i = 1, 2 . . . . .  n (1.4) 

In real systems, one can find certain particular non-trivial solutions of (1.4). The Kovalevskaya indices 
(KIs) are defined as the eigenvalues Pl . . . .  , Pn of the matrix 

Since system (1.1) is autonomous, one of the KIs is always equal to -1. As is easily shown, the sum 
of all KIs for a given vector e is constant and equal to the dimensionality of the system. The relationship 
between the degrees of quasi-homogeneity of first integrals, fields of symmetry and KIs is given by the 
following theorems. 

Theorem 1 [3]. If • is a quasi-homogeneous integral of system (1.1) and grad tb(c) is neither zero 
nor infinity, the quasi-homogeneous degree of the integral p is a KI of the system. 

Theorem 2 [7]. If [u, v] = 0 (i.e. u is a field of symmetries of system (1.1)) and u is quasi-homogeneous, 
deg (uJxi) are equal to one another, i = 1 , . . . ,  n, and u(c) * 0, then -deg (u.flxi) is a KI of the system. 
If there are several fields of integrals (or fields of symmetries) and they are independent of the solution 
(1.4), the quasi-homogeneous degree of each of them is a KI with the appropriate multiplicity. 

The investigation of the existence of quasi-homogeneous integrals for quasi-homogeneous systems 
(1.1) is in fact of more general interest, because any first integral of such a system that is meromorphic 
in U' reduces to a rational quasi-homogeneous integral if the signs of the gi are the same, or to a poly- 
nomial quasi-homogeneous integral if it has no singular points. Note that a quasi-homogeneons integral 
may have an irrational or complex degree of quasi-homogeneity, in which case it will not be single- 
valued. In the following sections we will present examples in which multi-valued integrals exist. 

2. EULER'S  EQUATIONS ON SO(4) AND THE 
P O INCARI~-LAMB-ZHUKOVS KII EQUATIONS 

It is well known that Euler's equations, describing the free rotation of a four-dimensional rigid body 
about a fixed point, are identical with the classical Poincar6-Lamb-Zhukovskii equations [8] (more 
precisely, they include them). The equations of this problem may be considered as approximate equations 
for the motion of the Earth, which has a solid mantle and a liquid core (for details, see [9]). The equations 
of motion of a top on SO(4) have also been analysed in the physics literature [10, 11], where the dynamics 
of interacting spins in an external field have been considered; these publications partly overlap results 
of research carried out in an even more general situation (see, for example [12]). 

The Lie algebra SO(4) is not simple and may be expressed as a direct sum SO(3) ~) SO(3). One can 
imagine this as meaning that one copy of SO(3) corresponds to the rotation of a solid about a fixed 
point, while the other corresponds to the quasi-rigid motion of a fluid (in Helmholtz's sense). 

If Mi and T/are the components of the angular momentum and vorticity vectors, respectively, in a 
system of coordinates attached to the body, then the equations of motion of the system may be written 
a s  

M =M xOHIOM =M x(AM +B~/) 

~I=VXOH IO~I=vx(BM +Cv), 
(2.1) 

where the Hamiltonian H is a homogeneous quadratic form in the variables M, 
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H = ( A M , M ) / 2  + ( B M ,  ~/) + (C~/, ~¢) /2 .  (2.2) 

The coefficients of the matricesA, B and C are determined by the dynamical characteristics of the 
body and the geomctdeal characteristics of the ellipsoidal cavity. Henceforth we shall assume that they 
are diagonal. 

Note that Eqs (2.1) may be expressed as Hamilton equations 

= {x, H}, x = (M,  ',/) ~ R 6 (2.3) 

with a (degenerate) Poisson bracket defined by the commutation relations of the algebra SO(4) ~- SO(3) 
SO(3) 

{Mi,M/}=e'o*MJ,, {?/,?i}=e//kYk, {Mi,Y/}=O (2.4) 

where ~/, is the Levi--Civita symbol. 
Equations (2.1) a~lways have, besides the energy integral H = E = const, another two first integrals 

(annihilators of the Poisson structure) (M, M) = M r  (?, ?) = ~0, restricted to which the Poisson 
structure (2.4) becomes non-degenerate. On the surfaces M 2 --/ilt 2, ~ = ~ system (2.1) reduces 
to the usual autonomous Hamiltonian system with two degrees of freedom, and a necessary condition 
for its integrability iis that one more first integral exists. 

Let us evaluate the KIs for the Eqs (2.1). The following two vectors satisfy system (1.4) for constant 
ci 

(+(al3a21)-)~, ~ (area32) -~,  + (a32at3) -)~, 0, 0, 0) 
(2.5) 

(0, 0, 0, +(q3c21) -)~, :1:(c2,c32) -J~, :t (c32q3),PJ), 

where aiy = a i - ay, ci/ = c i - c/. These solutions exist provided that all the elements of the matrices 
A and C are distinct. For the KIs of the two different solutions (2.5) we have 

p , = - l ,  P2 = p 3  = 2 ,  p ~ = l ,  Ps,6 = l + k  d 

kd =[ btd~2 +b2d~.a +b~d~l ]-~ .j , d = o , c .  

A necessary condition for all these KIs to be integers is that 

b?d32 +b2d,3 +b~d21 +k2d2,da2dl3 =0, d = a , c ,  

(2.6) 

(2.7) 

where kd e N; these conditions are identical with those in [7] (which were derived from the conditions 
that the general solution be meromorphic in the complex time plane). According to Theorem 1, the 
quantities p = 1 + ka and p = 1 + kc are candidates for the role of "good" degrees (for which grad 
O(c) # 0) of first "good" integrals, if the latter exist. Quadratic integrals of system (2.1) were discovered 
and generalized in ]publications of Fram, Schottky, Steklov and Manakov (see [12, 13]). 

A general integrable case, with k a = 3, kc = 1 was mentioned in [14]. There the additional integral 
is of fourth degree, and additional conditions (besides (2.7)) are imposed on the elements of the matrices 
A, B and C. 

3. R E S T R I C T E D  F O R M U L A T I O N  OF THE P R O B L E M  

Let us replace T in Eqs (2.1) by Ix? and let Ix go to zero. This yields a system 

M = M x A M ,  4/=~,xBM (3.1) 

describing the rotation of the body when the vortex strength is small compared with the angular 
momentum. The first vector equation of the system is independently integrable (the Euler-Poinsot 
problem). As to the: second, after the known function M(t) has been substituted into it 

~/= ~/× BM(t) (3.2) 
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it becomes a linear Hamiltonian system on SO(3) with periodic coefficients. For it to be integrable we 
need to know one more first integral (apart from the geometrical one), which is periodic in t. Such an 
integral indeed exists, since the system is linear and Hamiltonian; but it is not known how to extend it 
to the general system (3.1), whose behaviour is nevertheless regular. 

C3The additional integral (3.2) is multi-valued in the complex sense, that is, it is not holomorphic in 
x X, where X is the Riemann surface of the first three equations of (3.1). However, if the first condition 

of (2.7), obtained from the condition that the KIs of system are integers, holds for odd values of k = 
/ca, an additional first integral of system (3.2) may be found explicitly. It also then proves possible to 
find an explicit expression for t he  additional :first integral of the general system (3.1). 

We note that for system (3.1) to be integrable'we still lack one more integral, besides the trivial integrals 
11 = (M, AM), 12 = (M, M),/3 = (% ~/)/2 and the standard invariant measure. It turns out that the 
construction is simpler after one defines additional fields of symmetries for system (3.1). 

Let us introduce the differential operator defined by system (3.1) 

b = M  x A M ~ M  + v x B M  ~ (3.3) 

Then a field of symmetries will be defined by some operator/3 that commutes with/) in the usual sense 

[D,/3] = b/3 _ t3 6 = 0 (3.4) 

We will seek/~ in the form 

P = PfM )a / (3.5) 

Writing out condition (3.4), we obtain three linear partial differential equations defining a vector P 
= (el(M), P2(M), Pa(M)) 

D P  = 

0 M3b 3 -M2b 2 

-M3b 3 0 Mobl P 
M2b 2 - M l b l  

(3.6) 

The linear substitution 

P = diag(Mi, M2, M 3 ) A I I K A 3 1 K . . . A ~ I 2 K T  (3.7) 

reduces (3.6) to the form 

D T  = KA k T (3.8) 

where 

1-a32 n b3 -bb 2 , 
A n = ~ -b3  -a l3n  

II b 2 -b  I -aEln 

n = 1, 3, 5 .... (3.9) 

are constant matrices, and moreover 

det A n = - n (  n 2 a32a, 3a21 + b 2 a32 + b 2 a, 3 + b 2 a2 , ) (3.10) 

k = diag(M 2, M 2, M32), where k > 0 is an odd number. Hence it follows that T is a constant vector, 
defined by the condition AkT = 0. Clearly, T ¢ 0 if det A k  = 0, that is 

2 2 k2a32a13a21 + b?a32 + b~ al3 + b3 a21 = 0 (3.11) 

(k is an odd number). 
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This is a sufficient condition for system (3.1) to have a non-trivial field of symmetries represent- 
ed by the expli~t expression (3.7). 

A A . A 

The identity DI3 - 0 immediately implies that also D(PI3) •- O, i.e. PI3 = 14 is the required additional 
integral of Eqs (3.1) when condition (3.11) holds. We write this integral in the form 

/4 = (P(M), "y) (3.12) 

It follows from l~e linearity of 14 with respect to T that it is independent of 11,/2 and !3. In addition, 
it can be shown that, as a homogeneous form of order k + 1,/4 cannot be reduced to a combination 
of integrals of lower degrees. 

Condition (3.11) is satisfied in the case when B =/cA, where k is an odd number. When k = 1 we 
obtain the Euler-Poisson equations, in which ease/4 = (M, T). When k = 3 we obtain, by (3.12) 

-/4 = ~1  + ~ 2 + ~ 3  

~1 = T1MI [(a13a21 + 9a? )M? + (3a3a21 + 9ala 2 )M 2 + (9ala 3 - 3a2a13)M 2 ] (1 2 3). 

(3.13) 

As pointed out lbefore, the system of equations (3.1) has an additional fourth integral, whatever the 
elements of the matrices A and B. If (3.11) holds, it can be represented by a polynomial. It has also 
been possible to find an explicit expression in the case when bl = b2 = 0, b 3 ~e 0, while condition (3.11) 
need not necessarily hold. Then 

14 = T] sin ~o + T2 cos(p 

b3 

(3.14) 

This example once again confirms the fact that the general solution of Eqs (3.1), like their integrals, 
may be multi-valued. 

Generally spoaldng, the following statement is true: the general solution of a system of equations 
(3.1) can be expressed in terms of single-valued functions of time if and only if condition (3.11) is satisfied. 

It would be interesting to extend the above integrals of system (3.1) to system (2.1). We have not 
been able to do so, except in the ease when k = 1, which is already known [12, 13]. It has been shown 
by numerical investigations using construction of the Poincar6 mapping that such a generalization is 
impossible unless one imposes further restrictions on the elements of the matricesA, B and C. 

Note that some examples of integrable systems in the real domain with branching solutions as functions 
of complex time may be found in [15]. 

4. G E N E R A L I Z A T I O N  OF CHAPLYGIN'S PROBLEM ON THE ROLLING 
OF A DYNAMICALLY ASYMMETRIC SPHERE 

Consider the inertial motion without slipping of a Chaplygin sphere [16] on the surface of a sphere 
(Fig. 1). The equations of motion of such a system are 

M = M x o ) ,  ~,=~,~/xto, Z.=R/(R-a)  (4.1) 

( M  = 1~  + D~, x (to X 1¢)) 

where M is the angular momentum about the point of contact in a system of coordinates attached to 
the body, ~/is the vector joining the centres of the two spheres, and I is the inertia tensor relative to 
the centre of mass. Equations (4.1) have first integrals (M, M) = const, (M, (o) = const, (3', ~/) = 1 and 
an invariant measure found by Chaplygin 

= [1 - D(Z-t~,, ~)]-~ 

For these equations to be integrable, we still need one more first integralwthe analogue of the area 
integral. Note that i fD = 0, Eqs (4.1) reduce to system (3.1) withB = L4,A = F 1. We can therefore 
try to generalize t~he integral (3.12) to Eqs (4.1) when D ~ 0. 
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rig. 1. rig. 2. 

If k = 1 (R ~ =o), we obtain the classical Chaplygin problem, which is integrable when ~, = - I  (a = 
2R) corresponding to a fixed sphere, with a dynamically asymmetric sphere of twice the sphere's radius 
rolling around it on the outside (Fig. 2). 

It turns out that integral (3.12) with B = -.4 also holds for system (4.1). Hence the problem is 
integrable. However, it is not an essentially new integrable problem of non-holonomic mechanics, since 
its equations may he reduced, by a linear change of variables, to the form of Eqs (4.1) with ~, = 1 [17]. 
When ~, = 1 one also obtains an integrable generalization of system (4.1) if one introduces the force 
field of the Bruns problem, but it is difficult to suggest a physical interpretation for that field in this 
case. 

We were unable to find any generalizations of the integral (3.12) to system (4.1). It later turned out that this 
cannot be done directly, because, generally speaking, the behaviour of system (4.1) when ~, = 2n + 1 (n ¢ 7) is 
stochastic. This has been confirmed by numerical studies of the Poincar6 mapping. 

We have also been unable to extend the area integral to the case of a balanced gyrostat, even for ~, = -1. 

We wish to thank Yu. N. Fedorov  for  useful discussions, and A. A. Bagrets  and D. A. Bagrets for  
carrying out  the numerical  studies of  the regular  and stochastic behaviour  o f  these problems. 
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